A pressure-jump time-resolved X-ray diffraction study of cubic-cubic transition kinetics in monoolein.
نویسندگان
چکیده
In the past two decades, the geometric pathways involved in the transformations between inverse bicontinuous cubic phases in amphiphilic systems have been extensively theoretically modeled. However, little experimental data exists on the cubic-cubic transformation in pure lipid systems. We have used pressure-jump time-resolved X-ray diffraction to investigate the transition between the gyroid QGII and double-diamond QDII phases in mixtures of 1-monoolein in 30 wt % water. We find for this system that the cubic-cubic transition occurs without any detectable intermediate structures. In addition, we have determined the kinetics of the transition, in both the forward and reverse directions, as a function of pressure-jump amplitude, temperature, and water content. A recently developed model allows (at least in principle) the calculation of the activation energy for lipid phase transitions from such data. The analysis is applicable only if kinetic reproducibility is achieved, at least within one sample, and achievement of such kinetic reproducibility is shown here, by carrying out prolonged pressure-cycling. The rate of transformation shows clear and consistent trends with pressure-jump amplitude, temperature, and water content, all of which are shown to be in agreement with the effect of the shift in the position of the cubic-cubic phase boundary following a change in the thermodynamic parameters.
منابع مشابه
Kinetics and mechanism of the interconversion of inverse bicontinuous cubic mesophases.
This paper describes time-resolved x-ray diffraction data monitoring the transformation of one inverse bicontinuous cubic mesophase into another, in a hydrated lipid system. The first section of the paper describes a mechanism for the transformation that conserves the topology of the bilayer, based on the work of Charvolin and Sadoc, Fogden and Hyde, and Benedicto and O'Brien in this area. We s...
متن کاملMembrane protein crystallization in meso: lipid type-tailoring of the cubic phase.
Hydrated monoolein forms the cubic-Pn3m mesophase that has been used for in meso crystallization of membrane proteins. The crystals have subsequently provided high-resolution structures by crystallographic means. It is possible that the hosting cubic phase created by monoolein alone, which itself is not a common membrane component, will limit the range of membrane proteins crystallizable by the...
متن کاملDetergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization.
The in meso method for membrane protein crystallization uses a lipidic cubic phase as the hosting medium. The cubic phase provides a lipid bilayer into which the protein presumably reconstitutes and from which protein crystals nucleate and grow. The solutions used to spontaneously form the protein-enriched cubic phase often contain significant amounts of detergents that were employed initially ...
متن کاملStructural insights into the cubic-hexagonal phase transition kinetics of monoolein modulated by sucrose solutions.
Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol kg(-1) of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose ...
متن کاملPreparation and Study of Bismuth Oxide Doped and co-Doped with Cobalt(III) and Holmium(III) via Sol-Gel Method
In this research work the solid-solutions of (Bi2O3)1-x (Co2O3)x, [x= 0.05, 0.1] (1), (Bi2O3)1-x (Ho2O3) x, [x= 0.025, 0.05] (2), and (Bi2O3)1-x-y (Co2O3)x (Ho2O3)y</su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2008